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Aronia (Aronia melanocarpa) contains many polyphenols including cyanidin-3,5-diglucoside, and these poly-
phenols have beneficial effects on lifestyle-related diseases such as type 2 diabetes and obesity. In type 2 diabetes
and obesity model KKAY mice, drinking water supplemented with aronia juice reduced blood glucose levels
partly through inhibition of dipeptidyl peptidase IV (DPP IV) activity by cyanidin-3,5-diglucoside. The objective
of this study was to find a-glucosidase inhibitors in aronia juice. Polyphenols in aronia juice were first separated

using flash chromatography on a reversed-phase column. The fraction with inhibitory activity was further se-
parated using reversed-phase HPLC. Two peak fractions showed inhibitory activity. LC-MS/MS analysis of the
fractions indicated that they contained 3-caffeoylquinic acid (3-CQA) and 4-caffeoylquinic acid (4-CQA), re-
spectively. Both CQAs also inhibited DPP IV activity. The results suggest that caffeoylquinic acids in aronia juice
are important for the amelioration of type 2 diabetes by the juice.

1. Introduction

Aronia berries (Aronia melanocarpa) contain many polyphenols
(Jakobek, Seruga, Medvidovi¢-Kosanovié, & Novak, 2007; McDougall,
2017) and the freshly prepared juice contains much higher amounts of
sorbitol and polyphenols compared to other berries (Kulling & Rawel,
2008). The chemical composition of aronia berries has been recently
reviewed (Sidor & Gramza-Michatowska, 2019).

Aronia berries have been used as a traditional medicine in Russia
and eastern Europa (Kokotkiewicz, Jaremicz, & Luczkiewicz, 2010). As
Alessandra Durazzo et al. recently reviewed (Durazzo et al., 2019),
evidence supporting an association between polyphenol intake and the
incidence of human chronic disease has been accumulated. For ex-
ample, anthocyanin intake is suggested to retard the progression of
type-2 diabetes mellitus and to reduce mortality risk of cardiovascular
disease. As for aronia berries, recent mice studies have shown that ar-
onia berries have beneficial effects on lifestyle-related diseases such as

type 2 diabetes (Bhaswant, Shafie, Mathai, Mouatt, & Brown, 2017;
Oprea, Manolescu, Farcasanu, Mladin, & Mihele, 2014; Qin &
Anderson, 2012; Simeonov et al., 2002; Valcheva-Kuzmanova,
Kuzmanov, Tancheva, & Belcheva, 2007; Yamane et al., 2016a; Yamane
et al.,, 2017a), hypertension (Yamane et al., 2017b), hyperlipidemia
(Yamane et al.,, 2016b) and hypercholesterolemia (Duchnowicz,
Nowicka, Koter-Michalak, & Broncel, 2012). In human study, aronia
juice potently modulated hyperglycemia-related oxidative stress in a
beneficial manner (Banjari et al., 2017), and it is also shown that aronia
supplementation may lead to an increase in high-density lipoprotein
and concomitant reduction in total cholesterol and low-density lipo-
protein (Rahmani et al., 2019).

Prevention of the onset of lifestyle disease is an important challenge
and nutraceuticals play essential roles in proactive medical approach
(Santini & Novellino, 2017). Nutraceuticals are proposed to have a
pharmacological effect in addition to their nutritional value. Im-
portantly, their beneficial health properties must be clinically proven
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(Santini, Tenore, & Novellino, 2017). Aronia juice and the extracts from
the juice have a potential to provide nutraceuticals because their var-
ious beneficial effects have been shown in animal models.

The International Diabetes Federation reported that type 2 diabetes
mellitus has become a public challenge for many countries
(International Diabetes Federation, 2017). a-Glucosidase is an im-
portant intestinal enzyme that is responsible for carbohydrates diges-
tion (Pyner, Nyambe-Silavwe, & Williamson, 2017). Inhibitors of this
enzyme reduce intestinal glucose absorption to decrease postprandial
blood glucose levels. On the other hand, dipeptidyl peptidase IV (DPP
IV) inactivates intestinal peptide glucagon-like peptide 1 (GLP-1) and
gastric inhibitory peptide (GIP) (Sterrett. Bragg, & Weart, 2016;
Tasyurek, Altunbas, Balci, & Sanlioglu, 2014). Because these peptides
stimulate pancreatic insulin secretion after eating, DPP IV inhibitors
enhance the effect of GLP-1 and GIP through retardation of their de-
gradation by DPP IV. Various drugs used for treatment of diabetes
mellitus and their action mechanisms are reviewed by Raquel Vieira
et al. (Vieira et al., 2019).

Daily ingestion of aronia juice reduced blood glucose and HbAlc
levels in KKA” mice, a mouse model of type-2 diabetes and obesity, and
that this effect was due to inhibitors against a-glucosidase and DPP IV
contained in the juice (Yamane et al., 2016a, 2019). Cyanidin-3,5-di-
glucoside, cyanidin 3-O-glucoside, quercetin and cyanidin have been
identified as DPP IV inhibitors in aronia juice (Kalhotra, Chittepu,
Osorio-Revilla, & Gallardo-Velazquez, 2018; Kozuka et al., 2015;
Yamane, 2018, chap. 8; Yamane et al., 2019). However, a-glucosidase
inhibitors have not been isolated from aronia juice.

In this study, two a-glucosidase inhibitors were purified from aronia
juice using reverse-phase chromatography. The inhibitors were identi-
fied to be 3-caffeoylquinic acid (3-CQA) and 4-caffeoylquinic acid (4-
CQA). 3-CQA and 4-CQA also showed DPP IV inhibitory activity.

2. Materials and methods
2.1. Materials

Aronia juice was prepared from fresh aronia berries using a press
and immediately bottled in Bulgaria. The bottled juice was obtained
from Nakagaki Consulting Engineer (Osaka, Japan). 4-Caffeoylquinic
acid and 5-caffeoylquinic acid were purchased from Cayman (Michigan,
USA). 3-Caffeoylquinic acid was purchased from Nakarai Tesq (Kyoto,
Japan). Glycyl-i-proline 4-methylcoumaryl-7-amid (Gly-Pro-MCA) was
purchased from Peptide Institute (Osaka, Japan). a-Glucosidase and p-
nitrophenyl-a-p-glucopyranoside (PNP-glycoside) were purchased from
Sigma-Aldrich (MO, USA). DPP IV was purified from porcine seminal
plasma (Ohkubo, Huang, Ochiai, Takagaki, & Kani, 1994). All other
chemicals were of analytical grade and purchased from Wako Pure
Chemicals (Osaka, Japan).

2.2. Purification of a-glucosidase inhibitors

Scheme 1 shows the procedure of purification of a-glucosidase in-
hibitors from aronia juice. Aronia juice (300 mL) was directly applied to
a Wakogel 50C18 column (Wako, 200 mL bed volume) preequilibrated
with 0.1% aqueous formic acid (solvent A). The column was washed
extensively with solvent A, and then the adsorbates were eluted from
the column by a stepwise increase in the methanol concentration
(methanol: solvent A = 10, 20, 30, 40 and 50% (v/v)). The eluates
were collected and evaporated to dryness (fractions 1-5). Each dried
fraction was weighed and resolved with 12.5% or 25% aqueous me-
thanol containing 0.1% formic acid to a final concentration of 1-10 mg/
mL.

The most active fraction (fraction 1) was further purified using an
InertSustain C18 column (2.1 mm X 150 mm, GL Science, Tokyo,
Japan). The mobile phase consisted of solvent A and 90% acetonitrile
(10% water) containing 0.1% formic acid (B). The column was
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developed at the flow rate of 150 puL/min with the following gradient:
0-5 min with 5% B, 5-15 min with 5-30% B, 10-20 min with 30-60%
B, and 20-25 min with 60-90% B. The absorbance at 370 nm was
monitored and the two major peaks (F1-1 and F1-2) were collected
manually.

2.3. a-Glucosidase assay

a-Glucosidase activity was measured using p-nitrophenyl-a-p-glu-
copyranoside (Sigma-Aldrich, St. Louis, MO, USA) as a substrate. The
substrate stock solution (20 mmol/L PNP-glycoside) was prepared with
dimethyl sulfoxide. The reaction mixture (300 pL) contained 667 pumol/
L PNP-glycoside, 50 mmol/L sodium phosphate (pH 7.0), and 10 pL of
enzyme solution. The reaction was started by the addition of the en-
zyme solution. After incubation at 37 °C for 30 min, enzymatically re-
leased p-nitrophenol was measured using a microplate reader (SH-1000
Lab, Corona Electric) and absorbance at 405 nm.

2.4. DPP IV assay

DPP IV activity was measured using Gly-Pro-MCA as substrate. The
reaction mixture (990 pL) contained 50 mmol/L Tris—=HCl (pH 9.0),
100 pmol/L Gly-Pro-MCA and 5 pL of enzyme solution. The reaction
was started by the addition of 10 pL of the substrate stock solution
(10 mmol/L). After incubation at 37 °C for 30 min, the reaction was
stopped by the addition of 2 mL of 0.2 mol/L acetic acid. The en-
zymatically released 7-amino 4-methylcoumarin was measured fluor-
ometrically (excitation at 380 nm, emission at 440 nm) using a fluor-
escent spectrophotometer (F-2500, Hitachi).

2.5. Liquid chromatography-mass spectrometry (LC-MS)

An aliquot of the peak fractions of F1-1 and F1-2 (5 pL) was injected
into an InertSustain C18 column (0.3 mm X 150 mm, GL Science)
preequilibrated with 20% B (80% A). The column was developed at the
flow rate of 3.0 ul/min with the following gradient: 0-5 min with 20%
B, 5-30 min with 20-70% B, and 30-35 min with 70-90% B. The
column temperature was controlled at 20 °C. The eluate was equally
split into two fused silica capillary tubes (20 umol/L in internal dia-
meter) and one of them was connected to an electrospray ionization tip
(MonoSpray, GL Science). The spray voltage was 2.5 kV and the tem-
perature of the transfer tube was 150 °C. A mass spectrum of the eluate
was recorded between m/z 150 and 1000 in the positive ion mode. The
ion peaks with ion intensity of more than 1000 were data-dependently
subjected to MS/MS measurement. A syringe-type HPLC pump (HP
711V Micro-Flow Pump, GL Science) and an ion-trap mass spectrometer
(LCQ Fleet, Thermo Fisher Scientific, MA, USA) were used.

2.6. Statistical analysis

Data are expressed as means *+ S.E. Statistical analyses were per-
formed using analysis of variance (one-way ANOVA) followed by un-
paired Student's t-test. For comparison of multiple samples, the Tukey-
Kramer test was used.

3. Results
3.1. Purification of a-glucosidase inhibitors

Aronia juice was first subjected to an open column chromatography
on a Wakogel 50C18 column (Scheme 1). Out of five fractions obtained,
the fraction eluted with 10% methanol (Fraction 1) showed most sig-
nificant inhibitory activity against a-glucosidase (Fig. 1A). To further
isolate inhibitors, this fraction was applied to a semi-preparative high
performance liquid chromatography column (Scheme 1). As shown in
Fig. 1B, two major peaks (F1-1 and F1-2) appeared. These two peak
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Scheme 1. Purification of a-glucosidase inhibitors from aroniajuice

fractions showed similar absorption spectra with an absorption peak at
324 nm and a shoulder at 300 nm (Fig. 2D), indicating that the two
fractions have the same chromophore.

3.2. Mass spectrometric characterization of the inhibitors

Fig. 2A shows the mass spectrum of F1-1 and the product ion
spectrum obtained by collision-induced dissociation (CID) of the ion
with m/z 355.0 (the inset of Fig. 2A). The mass spectrum of F1-2
(Fig. 2B) was almost identical to that of F1-1. Since the calculated mass
of protonated caffeoylquinic acids ([M + H] ") is 355.10 and fragment
ions with m/z 163, 145, and 135 can be produced from the caffeic acid
moiety (Fig. 3), the results strongly suggested that the purified in-
hibitors are caffeoylquinic acids (Fang, Yu, & Prior, 2002; Ncube et al.,
2014; Xie et al., 2011).

To determine the regio-isomerism of F1-1 and F1-2, retention times
of F1-1 and F1-2 were compared to those of authentic 3-CQA, 4-CQA
and 5-CQA using an InertSustain C18 column (Fig. 2C). F1-1 and F1-2
were eluted at the same retention times as those of 3-CQA and 4-CQA,
respectively. These chemical structures were shown in Fig. 3. The
concentrations of 3-CQA and 4-CQA in F1-1 and F1-2 preparations were
estimated to be 1.5 and 1.4 mg/mL, respectively.

3.3. DPP IV inhibitory activities of fraction 1 and caffeoylquinic acids

Because aronia juice contains DPP IV inhibitors (Yamane et al.,
2016a, 2019), DPP 1V inhibitory activity was examined for Fraction 1
and authentic caffeoylquinic acids (3-CQA and 4-CQA). As shown in
Fig. 4A, Fraction 1 inhibited DPP IV activity. In addition, both 3-CQA
and 4-CQA inhibited DPP IV activity dose-dependently (Fig. 4B). ICsq
values of 3-CQA and 4-CQA were 0.19 and 0.05 pmol/L, respectively.

4. Discussion

Aronia juice inhibits both a-glucosidase and DPP IV (Yamane et al.,
2016a). Cyanidin-3,5-diglucoside has been identified to be a DPP IV
inhibitor contained in aronia juice. However, a strong inhibitory effect
of aronia juice on elevation of blood glucose and HbAlc levels in model
mice could not be attributed to the effect of cyanidin-3,5-diglucoside
alone (Yamane et al., 2019). Therefore, in the present study, we tried to
isolate a-glucosidase inhibitors from the juice.

Two a-glucosidase inhibitors (F1-1 and F1-2) were purified and they
were identified to be 3-CQA and 4-CQA, respectively. Recent compre-
hensive profiling of phenolic compounds in berry plants by Tian et al.
(Tian et al., 2017) has shown that aronia berries contain 3-CQA and 5-
CQA. In the present study, 5-CQA was not detected in our aronia juice.
Instead, 4-CQA was isolated as an a-glucosidase inhibitor.

Caffeoylquinic acids (CQAs) are abundantly found in coffee and
show anti-diabetic effects (Naveed et al., 2018). In rats fed a standard
meal, the elevation of blood glucose level was reduced when caffeoyl-
quinic acids were added to the meal (Tunnicliffe, Eller, Reimer, Hittel,
& Shearer, 2011). 3-CQA, 4-CQA and 5-CQA from Kuding Tea (Ilex
kudingcha C.J. Tseng) inhibit a-glucosidase activity (Xu et al., 2015).
The IC50 values of 3-CQA, 4-CQA and 5-CQA were reported to be 0.39,
0.34 and 0.30 mg/mlL, respectively (Xu et al., 2015). Because caf-
feoylquinic acids have too weak a-glucosidase inhibitory activity to
explain their anti-diabetic effects, it is suggested that caffeoylquinic
acids has another mechanisms to show anti-diabetic effects (Nyambe-
Silavwe & Williamson, 2018). Significant but weak inhibitory activity
against a-glucosidase was confirmed in the present study (Fig. 1A).

Fraction 1 inhibited DPP IV (Fig. 4A) and IC50 of 3-CQA and 4-CQA
against the enzyme were determined to be 0.19 and 0.05 umol/L, re-
spectively (Fig. 4B). Hispidulin, eriodictyol, naringenin and cirsimaritin
inhibit DPP IV with respective IC50 of 0.49, 10.9, 2.5 and 0.43 pmol/L
(Bower, Real Hernandez, Berhow, & de Mejia, 2014). DPP 1V inhibitory
activities of CQAs, especially 4-CQA, are stronger than those
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Fig. 1. Purification of a-glucosidase inhibitors from aronia juice.

A. Inhibition of a-glucosidase activity. Each five fractions obtained using a Wakogel 50C18 column (Scheme 1) 330 pug was added to the a-glucosidase standard assay
solution, respectively. Values are means = S.E (n = 5). **p < 0.01. B. Chromatogram of F1. The fraction showing the inhibitory activity (F1) was applied to an

InertSustain C18 column.

polyphenols. The present results suggest that caffeoylquinic acids con-
tained in aronia juice reduce blood glucose levels through inhibition of
both a-glucosidase and DPP IV.

5. Conclusion

Two a-glucosidase inhibitors were purified from aronia juice. These
inhibitors were identified to be 3- and 4-caffeoylquinic acids. Notably,
both 3-CQA and 4-CQA strongly inhibited DPP IV. Beneficial effects of
aronia juice on type 2 diabetes mellitus are suggested to be due to the
inhibition of both a-glucosidase and DPP IV by CQAs contained in the
juice.
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Fig. 2. Characterization of the purified inhibitors (F1-1 and F1-2).

A. Mass spectrum of F1-1. The inset shows the MS/MS spectrum of the ion with m/z 355.0. B. Mass spectrum of F1-2. The inset shows the MS/MS spectrum of the ion
with m/z 355.0. C. Comparison of the elution profiles of F1-1 and F1-2 with those of authentic samples of 5-CQA (1), 3-CQA (2), 4-CQA (3). D. Absorption spectra of
F1-1 and F1-2. After appropriate dilution with 0.1% aqueous formic acid, the spectra were measured using a Shimadzu UV-vis spectrophotometer (UV-2550).
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